WARM UP

NEW SEATS! CHECK THE SEATING CHART ON THE FRONT DESK.

- Fill out the anticipation guide for the Physics Unit.
> Indicate whether or not you agree or disagree with the statement by circling the appropriate shuttle.
> Make sure your name in on the worksheet and keep in it a secure place. We will refer to it later in the quarter.
LET'S READ THROUGH THE BASICS OF FORCE AND MOTION.

Apr 7-8:30 PM

KEY TERMS

Direction: a position to which motion or another position is referred.

Motion: change in position

Position: a condition with reference to place or location

Speed: rate of change of an object's position

Apr 7-8:57 PM

Apr 7-8:12 PM

PHYSICS

If it's green or wriǵgles, it's biology. If it stinks, it's chemistry. If it doesn't work, it's physics!

Apr 7-8:02 PM

- Motion is defined as the state in which the distance from another object is changing.
> Motion is typically determined by use of stationary reference points.
> Reference points are a place or object used for comparison to determine if something is in motion.
- Stationary or permanent fixed objects make good reference points because their position is fixed, it doesn't change.
- Moving objects make poor reference points because objects in motion make it difficult to determine the motion of another object.

Apr 7-8:08 PM

1.) What is motion?	-the state in which the distance from another object is changing a a hange in position
2.) Explain why everything	-because the Earth is in constant motion as it rotates around the sun, so everrthing on Earth moves with it
is constantly in motion.	

Apr 9-8:12 AM

Apr 8-7:34 PM

Now, let's practice!

- At your table, you should have 1 covered worksheet, 1 dry erase marker, and 1 calculator.
- Work together to get as many calculations completed as you can.
- Be ready to get called on as we go over the answers in class!

Before going any further in physics... we need to review and practice our math skills with conversions and units!

Remember this?

Apr 7-9:33 PM

- What are the basic units of measurement • meter, liter, gram in the SI system?
- What number is the SI system based upon?
- Why do we use this system in science?

Apr 8-7:32 PM

WRas	
1.) Convert 5.23 hm to cm :	52300.0 cm
2.) Convert 730 mg to g:	.730g
3.) Convert 4kl to ml:	4000000.0 ml
4.) Using the formula $d=m / v$, calculate density with a mass of 150 g and a volume of $125 \mathrm{~cm}^{3}$	$\mathrm{d}=1.2 \mathrm{~g} / \mathrm{cm}^{3}$

Apr 8-7:42 PM

NOTC PTAGGHGC
Work together with your seat partner to complete questions 10-14 on the "Customary to SI" conversion side of the worksheet.
Now that we have finished conversions, let's move on to more physics!

Apr 9-8:24 PM
$>$ The speed formula can be manipulated to solve for both time \& distance.

$$
\text { Time }=\text { Dist } / \text { Speed } \quad \text { Dist } .=\text { Speed } \times \text { Time }
$$

> Speed typically is not always constant.

- Average speed: is the overall rate at which an object travels.
« To determine average speed you take the total distance divided by the total time including any stops or breaks.

$$
\text { Avg.Speed }=\text { Tot.Dist } / \text { Tot.Time }
$$

> Instantaneous Speed
Video! -->

- Rate an object is moving at a particular instant or moment in time.

Apr 7-8:17 PM

- Velocity

$>$ Is the speed of an object in a given direction.
> If the speed changes, either increases or decreases, then the velocity changes.
> If the direction changes then the velocity changes.

Video! -->

- Slope

> The steepness of a line on a graph.

> Tells how fast one variable is changing in relation to the other.
$>$ In a distance versus time graph the steeper the slope the greater the speed.
> A constant slope means a constant speed.

- Speed

> Ratio of the distance traveled to the time it takes.
> The unit for distance is always the unit for distance in the problem over the unit for time given in the problem.
$>$ Speed typically measured in m / s in S.I. system \& mi/hr. in the Customary System.
$>$ Ex.) A cyclist traveled 50 km in 2 hours.

Apr 7-8:13 PM

1.) What is the speed of a car that $60 \mathrm{~km} / \mathrm{hr}$ traveled 120 km in 2 hours?
2.) How long does it take for a car to 1.6 hr travel 75 miles while traveling at
$45 \mathrm{mi} / \mathrm{hr}$?
3.) What is the difference between averafe speed and instantaneous speed?

An objects average speed is the overall rate with which that object traveled (includin8́ any breaks); instantaneous speed is an object's speed at a particular time or location.

Apr 8-8:43 PM

Apr 8-8:43 PM

Make sure your lab sheets are turned in!

Apr 9-9:18 PM

Marble Meadness leab

- You will work in your cooperative groups to complete the lab activity.
- Group Roles:
> Group Leader
> Time Keeper
> Ramp Holder/Marble Retriever
- You will be responsible for completing your own lab sheet. All boxes must be filled in, all questions must be answered, and both graphs must be complete and attached. Lab sheets are due on Wednesday!

1.) What is the difference between speed and velocity?
2.) What is the formula for slope?
velocity is speed but includes the direction in which the object is traveling

$$
\text { Slope }=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}
$$

a triangle
3.) What is the symbol for "a change in"?

Apr 9-9:09 PM

Make sure your homework is turned in!
1.) Find the slope using the following coordinates: $(3,-3)(5,2)$.
2.) What is the speed of an object that travels 52 km in 20 mins?
3.) How far does an object go if it is traveling at $32 \mathrm{mi} / \mathrm{hr}$ for 2 hours?

Apr 9-9:28 PM

- Acceleration

> in everyday terms it's described as the process of "speeding" up.
> Scientifically it is the rate a which velocity changes.
> Velocity is speed in a given direction and can change in 3 ways.
> Increase speed
> Decrease speed
> Change directions

[^0]- Calculating acceleration

$$
\text { Acc. }=\frac{\text { Fin.Spd }- \text { Int.Spd }}{\text { Time }}
$$

- Fin. $\mathrm{Spd}=$ the final speed of the object.
- Int. Spd = the beginning or initial speed of the object.
- Time = the overall time it takes.
> Ex.) An airplane reaches a take off speed of $70 \mathrm{~m} / \mathrm{s}$ in 15 seconds, how fast is the plane accelerating?

The unit for acceleration incorporates the unit for speed with the unit for time squared.

- Ex.) $\mathrm{m} / \mathrm{s}^{2}$
Ex.) mi/hr ${ }^{2}$
Ex.) km/day ${ }^{2}$

Apr 7-8:23 PM

- Graphing acceleration

> Can be displayed on both a distance versus time graph \& a speed versus time graph.

- Distance vs. Time
" The slope of the line will indicate the acceleration or deceleration between the points.
- Speed vs. Time
" The exponential curve will indicate the acceleration or deceleration between points.
" The exponential curve also indicates that with each second you are traveling farther than you did the previous second.

Apr 7-8:24 PM

Queqtina

- When you have completed your quiz, turn it over and place it on the corner of your desk.
- Work on the acceleration worksheet.
- The worksheet will be homework if not completed in class.

Variations on the acceleration formula given, speed \& time.

Finding acceleration $->\quad a=\frac{\nu_{2}-v_{1}}{t}$

Finding final speed --> $\quad v_{2}=v_{1}+(a \times t)$

Finding time --> $t=\frac{\nu_{2}-\nu_{1}}{a}$

Finding beginning speed $-->v_{1}=v_{2}-\left(a^{*} t\right)$

Apr 7-8:24 PM

1.) What is acceleration?	- the rate at which velocity changes; speeding up
2.) What is negative slowing down; deceleration acceleration? 3.) Calculate the acceleration of an object as it goes from 5 $\mathrm{~m} / \mathrm{s}$ to $20 \mathrm{~m} / \mathrm{s}$ in 18 seconds.	- $83 \mathrm{~m} / \mathrm{s}^{2}$

Apr 17-7:41 PM

Let's Practice!

Apr 17-7:53 PM

Motion, Speed, and Acceleration.notebook

Apr 9-9:29 PM
\square
Apr 9-9:27 PM

[^0]: > Deceleration is "negative" acceleration.

