

Read \& Annotate the reading individually.

Let's go through the reading together, writing important information in our foldable!

Warm Up: NEW next page (pg 10)

Oobleck Lab Conclusion

- Recall: Describe what you did during the Oobleck lab.
> What did you make?
> How did you make it?
> What did you do with it and what happened?
- Explain: Explain the purpose of the study.
> How did you use the scientific method during the lab?

Oobleck Lab Explanation

How did it's liquid-like and solid-like properties correspond to how quickly or slowly you moved the oobleck?

Sir Isaac Newton proposed that fluids should flow at a predictable, constant rate. While this is true for many fluids, like water, some fluids like our oobleck behave differently when different rates of forces are applied to them. These types of fluids are called "non-Newtonian" fluids.

What forces did you apply, and how did the Oobleck react?

Physics

If it's green or wriggles, it's biology. If it stinks, it's chemistry. If it doesn't work, it's physics!

Physics Anticipation Guide

Fill out the anticipation guide for the Physics Unit.
> Indicate whether or not you agree or disagree with the statement by circling the appropriate shuttle.
> Fold and glue into your ISN.
> Write: PHYSICS- Force \& Motion on front.
Let's read through the basics of force and motion.

Warm Up: Think-Pair-Share
 -No writing today- just talking! (on topic) ;)

1.) How do you describe "motion" in your own words?
2.) Describe where you are located in the classroom to your partner.
3.) Discuss why you think we are constantly moving, even if we are sitting still?
-the state in which the distance from another object is changing; a change in position.
-because the Earth is in constant motion as it rotates around the sun, so everything on Earth moves with it

Warm Up
1.) What is motion?
-the state in which the distance from another object is changing; a change in position
2.) Explain why everything is constantly in motion.
-because the Earth is in constant motion as it rotates around the sun, so everything on Earth moves with it
3.) What type of object makes a better reference -a stationary object point?

Key Terms- Copy Notes on Right

Direction: a position to which motion or another position is referred.

Motion: change in position

Position: a condition with reference to place or location

Speed: rate of change of an object's position

- Motion is defined as the state in which the distance from another object is changing.
> Motion is typically determined by use of stationary reference points.
> Reference points are a place or object used for comparison to determine if something is in motion.
- Stationary or permanent fixed objects make good reference points because their position is fixed, it doesn't change.
- Moving objects make poor reference points because objects in motion make it difficult to determine the motion of another object.

- Relative motion

> Motion depends on the reference point that you choose.
$>$ All things are in constant motion.

- This is due to the fact that the Earth is in constant motion around the sun.
- Everything on Earth is moving at the same speed ($30 \mathrm{~km} / \mathrm{s}$) however, because it is all riding on Earth and traveling at the same speed even "stationary" objects appear to not be moving.

Warm Up

1.) How do we measure speed in a car?
mph or miles per hour
miles/hours
miles divided by hours
2.) What are other units of measurement? (think

- cups, ounces, feet \& cooking, rulers, etc.)
3.) How tall are you?

Left Side Output

Use the Key Terms \& Underlined words from your notes to fill in your vocabulary chart. This should be on the LEFT side of your ISN.

Term	Definition	Your Words	Drawing

Before going any further in physics... we need to review and practice our math skills with conversions and units!

Remember this?

[^0]| - What is the French name for the S.I. System? | - Systematic International |
| :---: | :---: |
| - What do the following prefixes mean.... | - Kilo- 1,000 |
| | - Centi- 1/100 |
| | - Milli- 1/1,000 |
| - What is the basic unit in the S.I system for the following? | - Length- Meter |
| | - Mass- Gram |
| | -Volume- Liter |

Now, let's practice!

- At your table, you should have 1 covered worksheet, 1 dry erase marker, and 1 calculator.
- Work together to get as many calculations completed as you can.
- Be ready to get called on as we go over the answers in class!

More Practice

Work together with your seat partner to complete questions 10-14 on the "Customary to SI" conversion side of the worksheet.

Now that we have finished conversions, let's move on to more physics!
4.) Using the formula $d=m / v$, calculate density with a mass of
$\mathrm{d}=1.2 \mathrm{~g} / \mathrm{cm}^{3}$ 150 g and a volume of $125 \mathrm{~cm}^{3}$ \qquad
1.) Convert 5.23 hm to $\mathrm{cm}: \quad 52300.0 \mathrm{~cm}$
2.) Convert 730 mg to g :
.730g
3.) Convert 4kl to ml:
4000000.0 ml

-

Warm Up

Metric Olympics

Read Over your Lab sheet.

Pneumonic			Device
King	Kilo-	KiloMeter	km
Henry	Hecto-	HectoMeter	hm
Died	Deca-	DecaMeter	dam
By	BASE	Meter	m
Drinking	Deci-	DeciMeter	dm
Chocolate	Centi-	CentiMeter	cm
Milk	Milli-	MilliMeter	mm

Warm Up	
1.) Why do you think direction is more important when flying in an airplane than driving in a car?	52300.0 cm
2.) If you litter, and drop a piece of paper out of your car window while you are driving, will the paper go straight down, fly backwards or fly forward?	.730 g

> The speed formula can be manipulated to solve for both time \& distance.

$$
\text { Time }=\text { Dist. } / \text { Speed } \quad \text { Dist } .=\text { Speed } \times \text { Time }
$$

> Speed typically is not always constant.

- Average speed: is the overall rate at which an object travels.
« To determine average speed you take the total distance divided by the total time including any stops or breaks.

$$
\text { Avg.Speed }=\text { Tot.Dist. } / \text { Tot.Time }
$$

> Instantaneous Speed
Video! -->

- Rate an object is moving at a particular instant or moment in time.

- Velocity

$>$ Is the speed of an object in a given direction.
> If the speed changes, either increases or decreases, then the velocity changes.
> If the direction changes then the velocity changes.

Video! -->

Slope

> The steepness of a line on a graph.

> Tells how fast one variable is changing in relation to the other.
> In a distance versus time graph the steeper the slope the greater the speed.
$>$ A constant slope means a constant speed.

- Speed

> Ratio of the distance traveled to the time it takes.
> The unit for distance is always the unit for distance in the problem over the unit for time given in the problem.
$>$ Speed typically measured in m / s in S.I. system \& mi/hr. in the Customary System.
> Ex.) A cyclist traveled 50 km in 2 hours.

Answer:
Speed $=25 \mathrm{~km} / \mathrm{hr}$

Warm Up

1.) What is the speed of a 60 km/hr car that traveled 120 km in 2 hours?
1.6 hr
2.) How long does it take for a car to travel 75 miles while traveling at $45 \mathrm{mi} / \mathrm{hr}$?
3.) What is the difference between average speed and instantaneous speed?

An objects average speed is the overall rate with which that object traveled (including any breaks); instantaneous speed is an object's speed at a particular time or location.

Let's Practice Calculating Speed

You will work through the worksheet in sections. Be prepared to be called upon.

Basic:
-Work independently without a calculator. -Check answers with a calculator. Intermediate:
-Work independently with a calculator. Challenge:

Warm Up

1.) What is the difference
between speed and
velocity?
2.) What is the formula for slope?
velocity is speed but includes the direction in which the object is traveling

Slope $=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$ a triangle
3.) What is the symbol for "a change in"?

Warm Up

Make sure your lab sheets are turned in!

Marble Madness Lab
 - You will work in your cooperative groups to complete the lab activity.
 Group Roles:
 > Group Leader
 > Time Keeper
 > Ramp Holder/Marble Retriever
 You will be responsible for completing your own lab sheet. All boxes must be filled in, all questions must be answered, and both graphs must be complete and attached. Lab sheets are due on Wednesday!

- Acceleration

> in everyday terms it's described as the process of "speeding" up.
> Scientifically it is the rate a which velocity changes.
> Velocity is speed in a given direction and can change in 3 ways.
> Increase speed
> Decrease speed
> Change directions

> Deceleration is "negative" acceleration.

- Calculating acceleration

$$
\text { Acc. }=\frac{\text { Fin.Spd }- \text { Int.Spd }}{\text { Time }}
$$

- Fin. Spd = the final speed of the object.
- Int. Spd = the beginning or initial speed of the object.
- Time $=$ the overall time it takes.
> Ex.) An airplane reaches a take off speed of $70 \mathrm{~m} / \mathrm{s}$ in 15 seconds, how fast is the plane accelerating?

$$
\text { Acc. }=\frac{70 \mathrm{~m} / \mathrm{s}-0 \mathrm{~m} / \mathrm{s}}{15 \mathrm{~s}} \quad A c c .=\frac{70 \mathrm{~m} / \mathrm{s}}{15 \mathrm{~s}}=
$$

The unit for acceleration incorporates the unit for speed with the unit for time squared.
$\begin{array}{lll}\text { - Ex.) } m / s^{2} & \text { Ex.) mi/hr }{ }^{2} & \text { Ex.) } k m / \text { day }^{2}\end{array}$

$$
\begin{aligned}
& \text { Variations on the acceleration formula given, speed \& time. } \\
& \qquad \text { Acceleration }=\frac{\text { Final speed }- \text { Beginning speed }}{\text { Time }} \\
& \text { Finding acceleration --> } \quad a=\frac{v_{2}-v_{1}}{t} \\
& \text { Finding final speed --> } \\
& \text { Finding time --> } \\
& \begin{array}{l}
v_{2}=v_{1}+(a \times t) \\
t=\frac{v_{2}-v_{1}}{a} \\
\text { Finding beginning speed }-->v_{1}=v_{2}-(a * t)
\end{array}
\end{aligned}
$$

Graphing acceleration

> Can be displayed on both a distance versus time graph \& a speed versus time graph.

- Distance vs. Time
" The slope of the line will indicate the acceleration or deceleration between the points.
- Speed vs. Time
" The exponential curve will indicate the acceleration or deceleration between points.
« The exponential curve also indicates that with each second you are traveling farther than you did the previous second.

> 3.) Calculate the acceleration of an object as it goes from 5 $\mathrm{~m} / \mathrm{s}$ to $20 \mathrm{~m} / \mathrm{s}$ in 18 seconds.

- the rate at which velocity changes; speeding up
2.) What is negative

acceleration? | - slowing do |
| :--- |
| deceleratio |

2.) What is negative
slowing down; deceleration

Quiz Time!

- When you have completed your quiz, turn it over and place it on the corner of your desk.
- Work on the acceleration worksheet.
- The worksheet will be homework if not completed in class.

Let's Practice!

Balancing Act Demo

Watch as I squeeze the bottle.
What happened?
What forces are being applied?
When I placed the cup on the bottle, the force of gravity was pushing down. Squeezing the bottle forced air up into th cup, causing the cup to move up, and then back down due to gravity. Air resistance or Friction is also acting upon them.

[^0]: - What are the basic units of measurement • meter, liter, gram in the SI system?
 - What number is the SI - 10 system based upon?
 - Why do we use this system in science?
 - Scientists use this common system to easily convert numbers and share data all of the world. The sharing of information would be much more difficult if we all used different systems.

