Warm Up

1.) What kind of force, balanced or

- unbalanced forces unbalanced, changes an object's motion?
2.) What happens to an object when all forces are balanced?
3.) Who wrote the book Philosophiae Naturalis Principia Mathematica, which described universal gravitation and the 3 laws of motion?

Forces

Key

Balanced: When the net Tefipnsn object is zero. There will be no change in the motion of an object; object is either motionless or maintaining a constant speed.
Force: A push or pull acting on an object
Friction: A force that opposes motion between two surfaces that are touching
Gravity: The force of attraction between two masses
Inertia: Tendency of an object to resist a change in its motion
Magnetic Force: Force of attraction or repulsion exerted by a magnet
Unbalanced: When the net force of an object is greater than zero; there will be a change in the motion of the object; a motionless object will begin to move, while an already moving object will change its speed or direction

Warm Up

1.) What is the tendency for an object to remain in motion?
-inertia
2.) What is the force of attraction between two masses?
-gravity
3.) What is the force that opposes motion between two
-friction surfaces?

Video Demos

What happened in each of the videos?
How does it work?
Which Law of Motion was demonstrated?

The objects (coins, eggs, dishes) are sitting at rest and will remain at rest until another force acts on them. When the card/pan was removed from under the coins/eggs, gravity acted upon them, causing them to fall straight down. When the cloth was pulled, the dishes stayed in place because there was no other force to make them move.

Why didn't friction pull the objects? There was some friction present, but not enough to cause the objects to move in the same direction as the card/pan/cloth were pushed/pulled.

Warm Up:

*NO warm up page this week! Cut and Glue in Foldable.

- Cut all solid lines, fold all dotted lines.
-Glue on Right side of INB

1st Law of Motion

An object will keep doing whatever it is doing, whether it is sitting still or moving, unless the forces acting on it become unbalanced.
> Ex: If you have ever left your roller skate lying in the hallway, it will stay there until someone or something moves it. If you are riding your skateboard and you hit a rock, the board will stop but you will keep moving until something stops you.
> Gravity \& friction are 2 common unbalanced forces that often change an object's motion.
> Inertia: the natural resistance of an object to change its motion.

Warm Up

1.) The force of attraction or -magnetic force repulsion exerted by a magnet.
2.) A push or pull acting on an -force object
-contact forces occur when objects touch
3.) What is the difference between a contact force and a field force? each other; field forces happen when to objects interact without touching each other

Warm Up

1.) Which type of friction, sliding or -rolling rolling, is the easiest to overcome?
2.) Which type of friction occurs between objects that are stationary?
-static
3.) Combine these forces:

$-3 N \Rightarrow$

Warm Up

1.) What does "conservation" mean in regards to science?
to begin and end with the same amount

- Mom. = mass \times velocity
2.) What is the formula for finding momentum?
- ON
3.) Find the net force:

$$
13 N^{\downarrow}+3 N^{\beta}+12 N^{\beta}+2 N^{\downarrow}
$$

Warm Up

1.) If an object slows down from 15
meters a second to 5 meters a
second, over a period of 45 seconds,
what is the car's acceleration?
2.) Using the formula v2 = v1 + (a x t),
calculate the final speed for an object
that accelerates from $62 \mathrm{~m} / \mathrm{s}$ at a rate
of $3 \mathrm{~m} / \mathrm{s}^{\wedge} 2$ over a period of 30
seconds.

