

Video Demos

- What happened in each of the videos?
- How does it work?
- The objects (coins, eggs, dishes) are sitting at rest and will remain at rest until another force acts on them. When the card/pan was removed from under the coins/eggs, gravity acted upon them, causing them to fall straight down. When the cloth was pulled, the dishes stayed in place because there was no other force to make them move.
- Why didn't friction pull the objects? There was some friction present, but not enough to cause the objects to move in the same direction as the card/pan/cloth were pushed/pulled.

Force Key Terms- RT side

Balanced: When the net force on an object is zero. There will be no change in the motion of an object; object is either motionless or maintaining a constant speed.

Force: A push or pull acting on an object

of motion?

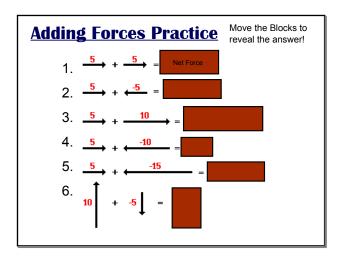
Friction: A force that opposes motion between two surfaces that are touching

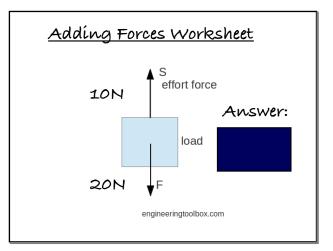
Gravity: The force of attraction between two masses

Inertia: Tendency of an object to resist a change in its motion

Magnetic Force: Force of attraction or repulsion exerted by a magnet

Unbalanced: When the net force of an object is greater than zero; there will be a change in the motion of the object; a motionless object will begin to move, while an already moving object will change its speed or direction


Left Side Output

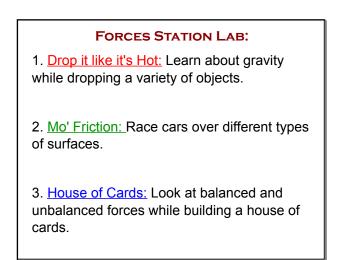

Use the **Key Terms & Underlined words** from your notes to fill in your vocabulary chart. This should be on the LEFT side of your ISN.

Definition	Your Words	Drawing
	Definition	Definition Your Words

Warm Up		
 What kind of force, balanced or unbalanced, changes an object's motion? 	 unbalanced forces 	
2.) What happens to an object when all forces are balanced?	 it will either remain stationary or remain in constant motion 	
 Who wrote the book Philosophiae Naturalis Principia Mathematica, which described universal gravitation and the 3 laws 	Sir Isaac Newton	

October 03, 2016

Warm Up	
1.) What does "conservation" mean?	 to begin and end with the same amount
2.) What is the net force of balanced objects?	• 0
3.) Find the net force: $13N^{2} + 3N^{4} + 12N^{4} + 2N^{5}$	• 0N


Г

Friction	
Friction	
> The force that 2 surfaces exert on each other when they rub against each other.	
 Friction acts in a direction opposite to the object's motion. 	he direction of the
 Smooth surfaces produce less friction than 	rough surfaces.
 The strength of the force of friction dependence 	
> How hard the surfaces push together.	NOS WANTS TO MOVE W THIS BREATION
> The types of surfaces involved.	
Types of Friction	• Fillenow
> Static friction	FRECTION IS A FORCE TANT ACTS IN AN OPPOSITE INTECTION TO MOVEMENT
 Friction that acts on objects that are 	not moving.
Friction acts in the opposite direction motion. (Ex.) Trying to push furniture across the foo Siliding friction	anter (Tableton)
 Friction that occurs when one solid s 	and an address of the second
 Priction that occurs when one solid s another. 	surface slides over
 Friction acts in the opposite direction motion. 	
 RollingENic@get the furniture begins to move then continued movement. Friction that occurs when an object n surface. 	
Rolling friction is easier to overcome e Ex.) Skateboard rolling across the sidewalk. e Ex.) Cars rolling on a track. Fluid friction – Friction that occurs when a solid obje fluid	ŚZ.
 Fluid: anything that flows & fills its co oil, etc. 	ontainer; air, water,
« Ex.) Oil inside of a engine.	We -

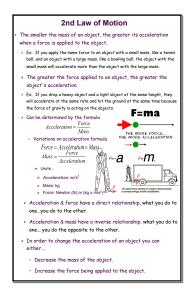
Momentum
Momentum
> "The quantity of motion."
> A product of an object's mass and its velocity.
> Described by both the strength & direction.
> The greater the momentum, the harder to stop a moving
object.
> There are 2 main types
- Linear momentum
« Momentum in a straight line.
- Angular momentum
« Momentum in an instant or at a specific point.
> Mass & velocity have a direct relationship to momentum.
 Increase mass, increases momentum
 Increase velocity, increases momentum
 Decrease mass, decrease momentum
 Decrease velocity, decrease momentum
Can be found using the formula
Momentum = Mass • Velocity
Variations on the momentum formula
$Mass = \frac{Momentum}{Velocity} Velocity = \frac{Momentum}{Mass}$
Units for momentum
Momentum is a <u>derived unit</u> meaning its unit is a combination of other units.
 (kg * m/s); kilogram times meter per second
 – (N *s); Newton times a second
Conservation of momentum
 Conserve/conservation in "everyday" language means to save.
 Conserve/conservation in Science means to begin & end with the same amount.
 Momentum may be transferred from one object to another but none is lost.
« Ex.) Newton's Cradle

Warm Up	
 Which type of friction, sliding or rolling, is the easiest to overcome? 	-rolling
2.) Which type of friction occurs between objects that are stationary?	-static
 3.) Combine these forces: 12N → + 15N ← + 5N → 	-3N >

Warm Up- Lab Summary

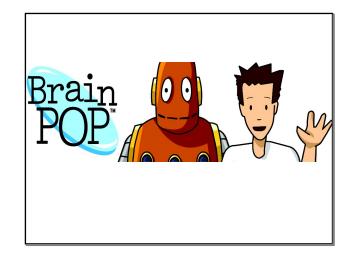
1.) Describe your findings in "Drop it like it's Hot".

- 2.) Describe your findings in "House of Cards."
- 3.) Describe your findings for "Mo Friction".

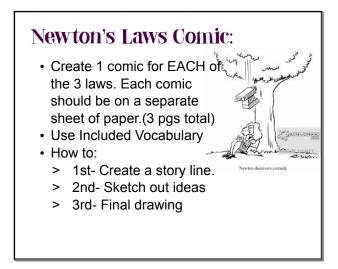

Newton's 1st Law of Motion

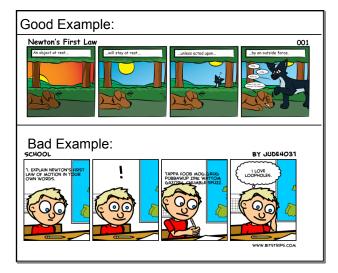
Law of Inertia: An object at rest tends to stay at rest unless acted upon by an unbalanced force.

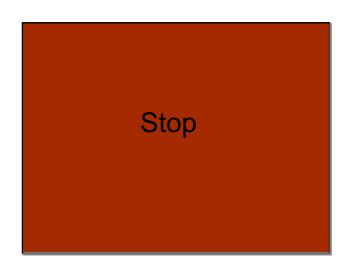
- Ex: If you have ever left your roller skate lying in the hallway, it will stay there until someone or something moves it. If you are riding your skateboard and you hit a rock, the board will stop but you will keep moving until something stops you.
- Gravity & friction are 2 common unbalanced forces that often change an object's motion.



INERTIA




Srd Law of Motion FOR EVERY ACTION THERE IS AN EQUAL AND OPPOSITE When one object exerts a force on a second object, the second object exerts a force back that is equal, but in the opposite direction. • Ex: If you stand on a skateboard and push against a wall, you will roll backwards. The wall pushes back on you with the same force. • Action/Reaction Pairs


- Motion of each object can't always be detected.
- Even though they are equal & opposite, they don't cancel each other out because they don't act on the same object.

Warm Up	
 What is the tendency for an object to remain in motion? 	-inertia
2.) What is the force of attraction between two masses?	-gravity
3.) What is the force that opposes motion between two surfaces?	-friction

Warm Up	
1.) If an object slows down from 15 meters a second to 5 meters a second, over a period of 45 seconds, what is the car's acceleration?	-0.22 m/s^2
2.) Using the formula $v2 = v1 + (a \times t)$, calculate the final speed for an object that accelerates from 62 m/s at a rate of 3 m/s ² over a period of 30 seconds.	152 m/s