

HILDER.

Biotechnology

We have been manipulating DNA for generations!

Artificial breeding/ Selective
creating new breeds of animals & new crop plants to improve our food

Animal breeding

Breeding food plants

"Descendants" of the wild mustard

the "Cabbage family"

Breeding food plants

Evolution of <u>modern corn</u> (right) from ancestral <u>teosinte</u> (left).

Rege

A Brave New World

Regents Biology

A Brave New World

Regents Biology

Regents Biology

Regents Biology

The code is universal

- Since all living organisms...
 - use the same DNA
 - use the same code book
 - read their genes the same way

TACGCACATTTACGTACGCGGATGCCGCGACTATGATC ACATAGACATGCTGTCAGCTCTAGTAGACTAGCTGACT CGACTAGCATGATCGATCAGCTACATGCTAGCACACYC GTACATCGATCCTGACATCGACCTGCTCGTACATGCTA CTAGCTACTGACTCATGATCCAGATCACTGAAACCCCTA GATCGGGTACCTATTACAGTACGATCATCCGATCAGAT CATGCTAGTACATCGATCGATACTGCTACTGATCTAGC TCAATCAAACTCTTTTTGCATCATGATACTAGACTAGC TGACTGATCATGACTCTGATCCCGTAGATCGGGTACCT ATTACAGTACGATCATCCGATCAGATCATGCTAGTACA TCGATCGATACTGCTACTGATCTAGCTCAATCAAACTC TTTTTGCATCATGATACTAGACTAGCTGACTGATCATG **ACTCTGATCCCGTAGATCGGGTACCTATTACAGTACGA** TCATCCGATCAGATCATGCTAGTACATCGATCGATACT

TACGCACATTTACGTACGCGGATGCCGCGACTATGATC **ACATAGACAT**GCTGTCAGCTCTAGTAGACTAGCTGACT CGACTAGCA HUMAN GENOME AGCACACYC GTACATCGA 3.2 billion bases TACATGCTA CTAGCTACTGACTCATGATCCAGATCACTGAAACCCCTA GATCGGGTACCTATTACAGTACGATCATCCGATCAGAT CATGCTAGTACATCGATCGATACTGCTACTGATCTAGC TCAATCAAACTCTTTTTGCATCATGATACTAGACTAGC TGACTGATCATGACTCTGATCCCGTAGATCGGGTACCT ATTACAGTACGATCATCCGATCAGATCATGCTAGTACA TCGATCGATACTGCTACTGATCTAGCTCAATCAAACTC TTTTTGCATCATGATACTAGACTAGCTGACTGATCATG ACTCTGATCCCGTAGATCGGGTACCTATTACAGTACGA TCATCCGATCAGATCATGCTAGTACATCGATCGATACT

Regents Biology

Regents Biology

Regents Biology

Regents Biology

Regents Biology

Humulin®

Regents Biology

Allowing organisms to produce new proteins

Humulin®

Regents Biology

Allowing organisms to produce new proteins

bacteria producing <u>human insulin</u>

Humulin®

Regents Biology

- Allowing organisms to produce new proteins
 - bacteria producing <u>human insulin</u>
 - bacteria producing <u>human growth hormone</u>

Humulin®

Regents Biology

Regents Biology

Genetic engineering

Re

- Genetic engineering
 - find gene

Re

- Genetic engineering
 - find gene
 - <u>cut</u> DNA in both organisms

- Genetic engineering
 - find gene
 - <u>cut</u> DNA in both organisms
 - paste gene from one creature into other creature's DNA

- Genetic engineering
 - find gene
 - <u>cut</u> DNA in both organisms
 - paste gene from one creature into other creature's DNA
 - insert new chromosome into organism

- Genetic engineering
 - find gene
 - <u>cut</u> DNA in both organisms
 - paste gene from one creature into other creature's DNA
 - insert new chromosome into organism
 - organism <u>copies</u> new gene as if it were its own

- Genetic engineering
 - find gene
 - <u>cut</u> DNA in both organisms
 - paste gene from one creature into other creature's DNA
 - insert new chromosome into organism
 - organism <u>copies</u> new gene as if it were its own
 - organism <u>reads</u> gene as if it were its own

- Genetic engineering
 - find gene
 - <u>cut</u> DNA in both organisms
 - paste gene from one creature into other creature's DNA
 - insert new chromosome into organism
 - organism <u>copies</u> new gene as if it were its own
 - organism <u>reads</u> gene as if it were its own
 - organism produces NEW protein: Remember: we all use the same genetic code!

Re

GTAACGAATTCACGCTT CATTGCTTAAGTGCGAA

Regents Biology
DNA "scissors"

GTAACGAATTCACGCTT CATTGCTTAAGTGCGAA

Regents Biology

- DNA "scissors"
 - enzymes that cut DNA

GTAACGAATTCACGCTT CATTGCTTAAGTGCGAA

Regents Biology

- DNA "scissors"
 - enzymes that cut DNA
 - restriction enzymes

GTAACGAATTCACGCTT CATTGCTTAAGTGCGAA

Regents Biology

- DNA "scissors"
 - enzymes that cut DNA
 - restriction enzymes

 used by bacteria to cut up DNA of attacking viruses

GTAACGAATTCACGCTT CATTGCTTAAGTGCGAA

Regents Biology

- DNA "scissors"
 - enzymes that cut DNA
 - restriction enzymes

- used by bacteria to cut up DNA of attacking viruses
- EcoRI, HindIII, BamHI

GTAACGAATTCACGCTT CATTGCTTAAGTGCGAA

- DNA "scissors"
 - enzymes that cut DNA
 - restriction enzymes

- used by bacteria to cut up DNA of attacking viruses
- EcoRI, HindIII, BamHI
- cut DNA at specific sites

GTAACGAATTCACGCTT CATTGCTTAAGTGCGAA

- DNA "scissors"
 - enzymes that cut DNA
 - restriction enzymes

- used by bacteria to cut up DNA of attacking viruses
- EcoRI, HindIII, BamHI
- cut DNA at specific sites
 - enzymes look for specific base sequences

GTAACGAATTCACGCTT CATTGCTTAAGTGCGAA

- DNA "scissors"
 - enzymes that cut DNA
 - restriction enzymes

- used by bacteria to cut up DNA of attacking viruses
- EcoRI, HindIII, BamHI
- cut DNA at specific sites
 - enzymes look for specific base sequences

GTAACG AATTCACGCTT CATTGCTTAA GTGCGAA

- DNA "scissors"
 - enzymes that cut DNA
 - restriction enzymes

- used by bacteria to cut up DNA of attacking viruses
- EcoRI, HindIII, BamHI
- cut DNA at specific sites
 - enzymes look for specific base sequences

GTAACG LAATTCACGCTT CATTGCTTAA GTGCGAA

Restriction enzymes

Regents Biology

Restriction enzymes

Cut DNA at specific sites

Regents Biology

Restriction enzymes

Cut DNA at specific sites

Ieave "sticky ends"

Regents Biology

Regents Biology

Cut other DNA with same enzymes

Regents Biology

Cut other DNA with same enzymes

Ieave "sticky ends" on both

Regents Biology

Cut other DNA with same enzymes

- Ieave "sticky ends" on both
- can glue DNA together at "sticky ends"

Regents Biology

Cut other DNA with same enzymes

- Ieave "sticky ends" on both
- can glue DNA together at "sticky ends"

GTAAC G	AAT	TCACGCTT	aene
CATTGC:	ГТАА	GTGCGAA	you want

Regents Biology

Cut other DNA with same enzymes

- Ieave "sticky ends" on both
- can glue DNA together at "sticky ends"

GTAAC G	AAT	TCACGCTT	gene
CATTGC	TTAA	GTGCGAA	you want
GGACCTG	AAT	TCCGGATA	chromosome

Regents Biology

Cut other DNA with same enzymes

- Ieave "sticky ends" on both
- can glue DNA together at "sticky ends"

gene you want	TCACGCTT	AAT	GTAAC G	
	GTGCGAA	CTAA	CATTGCT	
chromosome want to add gene to	TCCGGATA	AA	GGACCTG	
	GGCCTAT	FTAA	CCTGGACI	
combined	TCACGCTT	AA	GGACCTG	
DNA	GTGCGAA	гтаа	CCTGGACI	
				Jents Diology

Regents Biology

Regents Biology

Regents Biology

Sticky ends help glue genes together cut sites cut sites gene you want **TTGTAACGAATTCTACGAATGGTTACATCGCCGAATTCACGCTT AACATTGCTTAAGATGCTTACCAATGTAGCGGCTTAAGTGCGAA AATTCTACGAATGGTTACATCGCCG** isolated gene sticky ends **GATGCTTACCAATGTAGCGGCTTA** cut sites chromosome want to add gene to AATGGTTACTTGTAAC TACGATCGCCGATTCAACGCTT **TTACCAATGAACATTG** ATGCTAGCGGCTAAGTTGCGAA DNA liqase joins the strands sticky ends stick together chromosome with new gene added TAAC CAATTCTACGAATGGTTACATCGCCGAATTCTACGATC

GATGCTTACCAATGTAGCGG<mark>CTT</mark>A

CATTG

Thursday, February 21, 13

Re

Sticky ends help glue genes together cut sites cut sites gene you want **TTGTAACGAATTCTACGAATGGTTACATCGCCGAATTCACGCTT AACATTGCTTAAGATGCTTACCAATGTAGCGGCTTAAGTGCGAA AATTCTACGAATGGTTACATCGCCG** isolated gene sticky ends **GATGCTTACCAATGTAGCGGCTTA** chromosome want to add gene to cut sites AATGGTTACTTGTAAC TACGATCGCCGATTCAACGCTT **TTACCAATGAACATTG** ATGCTAGCGGCTAAGTTGCGAA

DNA <u>ligase</u> joins the strands sticky ends stick together Recombinant DNA molecule

chromosome with new gene added

TAAC<mark>GAATTCTACGAATGGTTACATCGCCGAATTC</mark>TACGATC CATTG<mark>CTTAA</mark>GATGCTTACCAATGTAGCGGCTTAACATGCTAGC

Thursday, February 21, 13

Re

Why mix genes together?

Gene produces protein in different organism or different individual

human insulin gene in bacteria

TAACCAATTCTACGAATGGTTACATCGCCCGAATTCTACGATC CATTGCTTAAGATGCTTACCAATGTAGCGGCTTAAGATGCTAGC

Regents Biology

Thursday, February 21, 13

Thursday, February 21, 13

Uses of genetic engineering

Uses of genetic engineering

Genetically modified organisms (GMO)

Genetically modified organisms (GMO)

enabling plants to produce new proteins

Genetically modified organisms (GMO)

- enabling plants to produce new proteins
 - Protect crops from insects: BT corn

Genetically modified organisms (GMO)

- enabling plants to produce new proteins
 - Protect crops from insects: BT corn
 - corn produces a bacterial toxin that kills corn borer (caterpillar pest of corn)

Genetically modified organisms (GMO)

- enabling plants to produce new proteins
 - Protect crops from insects: BT corn
 - corn produces a bacterial toxin that kills corn borer (caterpillar pest of corn)
 - **Extend growing season: fishberries**

Genetically modified organisms (GMO)

- enabling plants to produce new proteins
 - Protect crops from insects: BT corn
 - corn produces a bacterial toxin that kills corn borer (caterpillar pest of corn)

Extend growing season: fishberries

 strawberries with an anti-freezing gene from flounder

Genetically modified organisms (GMO)

- enabling plants to produce new proteins
 - Protect crops from insects: BT corn
 - corn produces a bacterial toxin that kills corn borer (caterpillar pest of corn)

Extend growing season: fishberries

- strawberries with an anti-freezing gene from flounder
- Improve quality of food: golden rice

Genetically modified organisms (GMO)

- enabling plants to produce new proteins
 - Protect crops from insects: BT corn
 - corn produces a bacterial toxin that kills corn borer (caterpillar pest of corn)

Extend growing season: fishberries

 strawberries with an anti-freezing gene from flounder

Improve quality of food: golden rice

 rice producing vitamin A improves nutritional value

Bacteria

Bacteria are great!

- one-celled organisms
- reproduce by mitosis
 - easy to grow, fast to grow
 - generation every ~20 minutes

Bacteria

Bacteria are great!

- one-celled organisms
- reproduce by mitosis
 - easy to grow, fast to grow
 - generation every ~20 minutes

Bacteria

Bacteria are great!

- one-celled organisms
- reproduce by mitosis
 - easy to grow, fast to grow
 - generation every ~20 minutes

Bacterial DNA

Single circular chromosome

- only one copy = haploid
- no nucleus

Regents Biolo

Plasmids

Thursday, February 21, 13

Ο

 \mathbf{O}

Plasmids

small extra circles of DNA

0

 \mathbf{O}

0

Regents Biology

Plasmids

- small extra circles of DNA
- carry extra genes that bacteria can use

Thursday, February 21, 13

 \mathbf{O}

Plasmids

 \mathbf{O}

- small extra circles of DNA
- carry extra genes that bacteria can use
- <u>can be swapped between bacteria</u>

Plasmids

- small extra circles of DNA
- carry extra genes that bacteria can use
- <u>can be swapped between bacteria</u>

bacterial sex!!

 \mathbf{O}

Plasmids

- small extra circles of DNA
- carry extra genes that bacteria can use
- <u>can be swapped between bacteria</u>
 - bacterial sex!!
 - rapid evolution = <u>antibiotic resistance</u>

 \bigcirc

Plasmids

- small extra circles of DNA
- carry extra genes that bacteria can use
- <u>can be swapped between bacteria</u>

 \mathbf{O}

- bacterial sex!!
- rapid evolution = <u>antibiotic resistance</u>

0

 can be picked up from environment

 \mathbf{O}

Regents Biology

 \bigcirc

 \cap

Grow bacteria...make more

Regents Biology

Applications of biotechnology

Thursday, February 21, 13

Re

2006-2007

I'm a very special pig! Got any Questions?

