Goal 3

Bio.3.1 Explain how traits are determined by the structure and function of DNA.

Bio.3.2 Understand how the environment, and/or the interaction of alleles, influences the expression of genetic traits.

Bio.3.3 Understand the application of DNA technology.

Bio.3.4 Explain the theory of evolution by natural selection as a mechanism for how species change over time.

Bio.3.5 Analyze how classification systems are developed upon

speciation.

DNA

- > The structure of DNA is a double helix or "twisted ladder" structure.
- The sides are composed of alternating phosphate-sugar groups.
- The "rungs of the DNA ladder" are composed of complementary nitrogenous base pairs (always adenine, A, to thymine, T, and cytosine, C, to guanine, G) joined by weak hydrogen bonds.
- The sequence of nucleotides in DNA codes for proteins, which is central key to cell function and life.
- Replication occurs during the S phase of the cell cycle and allows daughter cells to have an exact copy of parental DNA.
- Cells respond to their environments by producing different types and amounts of protein.

DNA

- Advantages of the overproduction of proteins at the incorrect times: Injury Repair
- Disadvantages of the overproduction, underproduction or production of proteins at the incorrect times:

Protein Synthesis

Process of protein synthesis:

<u>Transcription</u> that produces an RNA copy of DNA, which is further modified into the three types of RNA

mRNA travels to the ribosome (rRNA)

<u>Translation</u> – tRNA supplies appropriate amino acids

- Amino acids are linked by peptide bonds to form polypeptides.
- Polypeptide chains form protein molecules.
- Proteins can be structural (forming a part of the cell materials) or functional (hormones, enzymes, or chemicals involved in cell chemistry).

Protein synthesis

 Interpret a codon chart to determine the amino acid sequence produced by a particular sequence of bases.

First Letter	Second Letter				Third
	U	c	A	G	Letter
U	phenylalanine	serine	tyrosine	cysteine	U
	phenylalanine	serine	tyrosine	cysteine	C
	leucine	serine	stop	stop	A
	leucine	serine	stop	tryptophan	G
c	leucine	proline	histidine	arginine	U
	leucine	proline	histidine	arginine	C
	leucine	proline	glutamine	arginine	A
	leucine	proline	glutamine	arginine	G
A	isoleucine	threonine	asparagine	serine	U
	isoleucine	threonine	asparagine	serine	С
	isoleucine	threonine	lysine	arginine	A
	(start) methionine	threonine	lysine	arginine	G
G	valine	alanine	aspartate	glycine	U
	valine	alanine	aspartate	glycine	C
	valine	alanine	glutamate	glycine	A
	valine	alanine	glutamate	glycine	G

Mutations

- Mutations are changes in DNA coding and can be deletions, additions, or substitutions.
- Mutations can be random and spontaneous or caused by radiation and/or chemical exposure.
- Describe how mutations change amino acid sequence, protein function, phenotype.
- Only mutations in sex cells (egg and sperm) or in the gamete produced from the primary sex cells

Meiosis

- Genes are on separate chromosome which allows them to be shuffled in meiosis..
- The process of meiosis leads to independent assortment and ultimately to greater genetic diversity.
- Genetic variation in sexually reproducing organisms including
 - Crossing over
 - Random assortment of chromosomes
 - Gene mutation
 - Nondisjunction: failure of chromosomes to separate
 - Fertilization: combination of 2 set of genes.

Random Assortment

- Meiosis is the cell division which takes place to form sex cells (sperm and egg cells).
- In the first metaphase the chromosomes line up in pairs along the equator.
- The random assortment basically means they can line up in any order before they are pulled to either ends of th

Meiosis

Mitosis vs. Meiosis

- Asexual Reproduction
- One cell division
- 2 identical cells produced
- Makes body(somatic) cells
- Goes from diploid to diploid
- Chromosome number stays the same.

- Sexual Reproduction
- Two cell divisions
- 4 cells produced
- Makes gametes
- Goes from diploid to haploid (2n to 1n)
- Chromosome number reduced.

Meiosis

Mitosis

Genetics

- Determine parental genotypes based on offspring ratios. Example: B= brown, b= white If 3 out of the 4 offspring are Brown, what would the parents be?
- Co-dominance: Traits are equally expressed.
 Example: roan cow or blood types
- Incomplete dominance: Blending of traits ; Example: four o'clock flower
- Polygenic traits are controlled by more than one pair of genes and that this pattern of inheritance is identified by the presence of a

Karyotype

 Look at the 23rd set of chromosomes to see if male or female. If they are the same, it is a female.

Punnett Square

What is the genotypic(RR:Rr:rr) ratio of the square below?

Punnett Square Showing a Cross of a Heterozygous Round-Seeded Pea with a Heterozygous Round-Seeded Pea Yielding 1/4 Wrinkled-Seeded Offspring

Genetics

- Autosomal inheritance patterns:
 - Sickle cell anemia (incomplete dominance)
 - Cystic fibrosis (recessive heredity)
 - Huntington's disease (dominant heredity).

Sickle Cell

A=normal, a=sickle AA= normal but can get malaria Aa= carrier; doesn't have the symptoms of sickle cell anemia and cannot get malaria. aa= Has sickle cell anemia

If a male with Huntingon's marries a female without it, what would be the chance of their child having it?

Blood Types: Codominant and

 Solve and interpret codominant crosses involving multiple alleles including blood typing problems.

Blood type	Genotype
A	I ^A I ^A , I ^A i
В	l ^B l ^{B,} l ^B i
AB	I ^A I ^B
0	ii

Can a mom with A blood type and a dad with B blood type have a baby with O blood type?

Friday, May 10, 13

Sex- Linked Crosses

- Color-blindness and hemophilia
- Males are more likely to express a sex-linked trait.
- Sex Linked traits are usually recessive and

Pedigrees

- Males: Squares
- Females: Circles

Pedigree 7. X-linked recessive inheritance.

In this pedigree only number 1 and 2 have the disease. What is the genotype of person II 2?

Friday, May 10, 13

Relationship between environmental factors and expression of a particular genetic trait.

- Iung/mouth cancer tobacco use
- skin cancer vitamin D, folic acid and sun exposure
- diabetes diet/exercise and genetic interaction
- PKU diet
- heart disease diet/exercise and genetic

Gel electrophoresis

- The general steps of gel
 - electrophoresis -
 - use restrictions
 enzymes to cut
 DNA into different
 sized fragments
 - run those
 fragments on gels
 with longer

Transgenic and transformation

- Transgenic organisms (plants, animals, & bacteria) are used in agriculture and industry
 - pharmaceutical applications such as the production of human insulin.
- The steps in bacterial transformation
 - insertion of a gene into a bacterial plasmid,
 - getting bacteria to take in the plasmid

Ethical Issues

- Identify the reasons for establishing the Human Genome Project.
 - Identify the sequence of DNA on a human's chromosome.
 - The project is useful in determining whether individuals may carry genes for genetic conditions and in developing gene therapy.
- Gene therapy: Using viral factors to transfer the correct gene to a patient
 - Used to treat: Severe Combined Immunodeficiency and Cystic Fibrosis
- Critique the ethical issues and implications of

Evidence of evolution

- Hypothesized early atmosphere and experiments that suggest how the first "cells" may have evolved and how early conditions affected the type of organism that developed
 - Oparin's hypothesis: organic soup model; tested by Miller
- Steps of evolution
 - first anaerobic and prokaryotic
 - then photosynthetic
 - then eukaryotic
 - then multicellular
- Fossil evidence informs our understanding of the evolution of species and what can be inferred from this evidence.
 - Biochemical (molecular) similarities tell us what organisms have similar ancestors.

Natural selection

- Cause and effect model for the process of natural selection:
 - Species have the potential to increase in numbers exponentially.
 - Populations are genetically variable due to mutations and genetic recombination.
 - There is a finite supply of resources required for life.
 - Changing environments select for specific genetic phenotypes.
 - Those organisms with favorable adaptations survive, reproduce and pass on their alleles.
 - The accumulation and change in favored alleles leads to changes in species over time.

Geographic isolation can

cause speciation.

Resistance

 Develop a cause and effect model for the role of disease agents in natural selection including evolutionary selection of resistance to antibiotics and pesticides in various species, passive/active immunity, antivirals and vaccines.

Resistance

- 1. Passive immunity: transfer of immunity from one organism to another.
 - 1. Mother to child
 - 2. Vaccines: dead or live viruses injected into an animal
 - 3. Body recognizes pathogens and is ready to kill it.
- 2. Active immunity: A type of <u>immunity</u> or <u>resistance</u> developed in an <u>organism</u> by its own production of <u>antibodies</u> in response to an exposure to an <u>antigen</u>,

<u>a pathogen</u> or to a <u>vaccine</u>.

3. and vaccines.

Classification

- Classification is constantly changing based on new knowledge generated by research on evolutionary relationships and the history of classification system.
- Currently Seven levels: kingdom, phylum, class, order, family, genus, species
- Currently 3 domains and 6 kingdoms:

Classification

1

100

What is the name of organism #6?

Always start with 1 a for each organism.

70	July 3	4
5		EB * 1
1a.	organism with two or four functional legs ;	go to 2 go to 3
16.	organism without two or four legs	50 to 0
2a.	organism without wings	Canis familiarisdog
-	annual south minor	Passer domesticus house sparrow
26.	organism is unicellular	go to 4
3a. 2h	organism is multicellular	go to 5
30.	organism is maneement.	
4a.	organism swims freely in water	Balantidium spbalantidium
-	organism suchored to substrate	Stentor spstentor
50	organism is heterotrophic	go to 6
5b	organism is autotrophic	go to 7
	. organism is another	
68	organism lives in oceans	Monodon monocerosnarwnai
6b	organism lives on land	. Ophiophagus hannahking cobra
7a	. organism is a tree	. Pinus ponderosa ponderosa pine
76	. organism is an herb	. Taraxicum officinale dandelion

Friday, May 10, 13

Phylogenetic Tree

Phylogenetic Tree of Life

Use the tree to find relationships and evolution.

Are fungi more closely related to an animal or to a slime mold?

Friday, May 10, 13