

DNA and Genetics

DNA (Deoxyribonucleic Acid)

DNA is a <u>NUCLEIC ACID</u>

DNA is a <u>NUCLEIC ACID</u>

Genetic material of cells...

GENES – units of genetic material that
<u>CODES FOR A SPECIFIC TRAIT</u>

DNA is a <u>NUCLEIC ACID</u>

 DNA is made up of repeating molecules called <u>NUCLEOTIDES</u>

A. Frederick Griffith – Discovers that a factor in diseased bacteria can transform harmless bacteria into deadly bacteria (1928)

B. Rosalind Franklin - X-ray photo of DNA.

A. Frederick Griffith – Discovers that a factor in diseased bacteria can transform harmless bacteria into deadly bacteria (1928)

B. Rosalind Franklin - X-ray photo of DNA.
(1952)

A. Frederick Griffith – Discovers that a factor in diseased bacteria can transform harmless bacteria into deadly bacteria (1928)

B. Rosalind Franklin - X-ray photo of DNA.
(1952)

- B. Rosalind Franklin X-ray photo of DNA. (1952)
- C. Watson and Crick described the DNA molecule from Franklin's X-ray.

- B. Rosalind Franklin X-ray photo of DNA. (1952)
- C. Watson and Crick described the DNA molecule from Franklin's X-ray. (1953)

- B. Rosalind Franklin X-ray photo of DNA. (1952)
- C. Watson and Crick described the DNA molecule from Franklin's X-ray. (1953)

- A. Frederick Griffith Discovers that a factor in diseased bacteria can transform harmless bacteria into deadly bacteria (1928)
- B. Rosalind Franklin X-ray photo of DNA. (1952)
- C. Watson and Crick described the DNA molecule from Franklin's X-ray. (1953)

- A. Frederick Griffith Discovers that a factor in diseased bacteria can transform harmless bacteria into deadly bacteria (1928)
- B. Rosalind Franklin X-ray photo of DNA. (1952)
- C. Watson and Crick described the DNA molecule from Franklin's X-ray. (1953)

 DNA had specific pairing between the nitrogen bases:

DNA had specific pairing between the nitrogen bases:

ADENINE - THYMINE

 DNA had specific pairing between the nitrogen bases:

ADENINE – THYMINE

CYTOSINE - GUANINE

 DNA had specific pairing between the nitrogen bases:

ADENINE – THYMINE CYTOSINE - GUANINE

•DNA was made of <u>2</u> long stands of nucleotides arranged in a specific way called the <u>"Complementary Rule"</u>

DNA Double Helix

Tuesday, November 27, 12

PURINES 1. Adenine (A)

PURINES 1. Adenine (A)

• PURINES

1. Adenine (A)

2. Guanine (G)

• PURINES

1. Adenine (A)

2. Guanine (G)

PURINES 1. Adenine (A)

2. Guanine (G)

• PYRIMIDINES

• PURINES

1. Adenine (A)

2. Guanine (G)

• PYRIMIDINES 3. Thymine (T)

• PURINES

1. Adenine (A)

2. Guanine (G)

• PYRIMIDINES 3. Thymine (T)

Nitrogenous Bases

• PURINES

- 1. Adenine (A)
- 2. Guanine (G)
- PYRIMIDINES
 - 3. Thymine (T)
 - 4. Cytosine (C)

Nitrogenous Bases

• PURINES

- 1. Adenine (A)
- 2. Guanine (G)
- PYRIMIDINES
 - 3. Thymine (T)
 - 4. Cytosine (C)

Nitrogenous Bases

• PURINES

- 1. Adenine (A)
- 2. Guanine (G)
- PYRIMIDINES
 - 3. Thymine (T)
 - 4. Cytosine (C)

Adenine must pair with Thymine

Adenine must pair with Thymine

- Adenine must pair with Thymine
- Guanine must pair with Cytosine

- Adenine must pair with Thymine
- Guanine must pair with Cytosine

Chargaff's Rule

- Adenine must pair with Thymine
- Guanine must pair with Cytosine
- Their amounts in a given DNA molecule will be about the same.

Chargaff's Rule

- Adenine must pair with Thymine
- Guanine must pair with Cytosine
- Their amounts in a given DNA molecule will be about the same.

Chargaff's Rule

- Adenine must pair with Thymine
- Guanine must pair with Cytosine
- Their amounts in a given DNA molecule will be about the same.

BASE-PAIRINGS

BASE-PAIRINGS

BASE-PAIRINGS

The "code" of the chromosome is the <u>SPECIFIC</u> <u>ORDER</u> that bases occur.
The "code" of the chromosome is the <u>SPECIFIC</u> <u>ORDER</u> that bases occur.

The "code" of the chromosome is the <u>SPECIFIC</u> <u>ORDER</u> that bases occur.

ATCGTATGCGG...

Tuesday, November 27, 12

The Code of Life...

 The "code" of the chromosome is the <u>SPECIFIC</u> <u>ORDER</u> that bases occur.

ATCGTATGCGG...

Tuesday, November 27, 12

Tuesday, November 27, 12

many functions but mostly just protein synthesis

many functions but mostly just protein synthesis

many functions but mostly just protein synthesis

three main types of RNA: <u>messenger</u> RNA, <u>ribosomal</u> RNA, and <u>transfer</u> RNA <u>mRNA</u>, rRNA, tRNA

many functions but mostly just protein synthesis

many functions but mostly just protein synthesis

many functions but mostly just protein synthesis

three main types of RNA: <u>messenger</u> RNA, <u>ribosomal</u> RNA, and <u>transfer</u> RNA <u>mRNA</u>, rRNA, tRNA

Types of RNA

Double stranded

Double strandedSugar = deoxyribose

Double stranded
Sugar = deoxyribose
Thymine (no Uracil)

Double stranded
Sugar = deoxyribose
Thymine (no Uracil)

Double stranded
 Sugar = deoxyribose
 Thymine (no Uracil)

Stays in nucleus

Double stranded
Sugar = deoxyribose
Thymine (no Uracil)

Stays in nucleusOne type

Double stranded
Sugar = deoxyribose
Thymine (no Uracil)

Stays in nucleusOne type

- Double stranded
 Sugar = deoxyribose
 Thymine (no Uracil)
- Stays in nucleusOne type

Same copy in the cell all the time

16

16

Double stranded

Double strandedSugar = deoxyribose

Double stranded
Sugar = deoxyribose
Thymine (no Uracil)

Double stranded
Sugar = deoxyribose
Thymine (no Uracil)

Double stranded
Sugar = deoxyribose
Thymine (no Uracil)

Stays in nucleus

- Double stranded
 Sugar = deoxyribose
 Thymine (no Uracil)
- Stays in nucleusOne type

- Double stranded
 Sugar = deoxyribose
 Thymine (no Uracil)
- Stays in nucleusOne type

- Double stranded
 Sugar = deoxyribose
 Thymine (no Uracil)
- Stays in nucleusOne type

Same copy in the cell all the time

16
- Double stranded
 Sugar = deoxyribose
 Thymine (no Uracil)
- Stays in nucleusOne type

Same copy in the cell all the time

Single stranded

Double stranded
Sugar = deoxyribose
Thymine (no Uracil)

Single strandedSugar = ribose

Stays in nucleusOne type

Same copy in the cell all the time

Double stranded
Sugar = deoxyribose
Thymine (no Uracil)

Single stranded
 Sugar = ribose
 Uracil (instead of Thymine)

Stays in nucleusOne type

Same copy in the cell all the time

- Double stranded
 Sugar = deoxyribose
 Thymine (no Uracil)
- Stays in nucleusOne type

Same copy in the cell all the time

Single stranded
Sugar = ribose
Uracil (instead of Thymine)
Nucleus & cytoplasm

- Double stranded
 Sugar = deoxyribose
 Thymine (no Uracil)
- Stays in nucleusOne type

Same copy in the cell all the time

Single stranded
Sugar = ribose
Uracil (instead of Thymine)
Nucleus & cytoplasm
3 types (mRNA, tRNA, tRNA, tRNA)

- Double stranded
 Sugar = deoxyribose
 Thymine (no Uracil)
- Stays in nucleusOne type

Same copy in the cell all the time

Single stranded
Sugar = ribose
Uracil (instead of Thymine)
Nucleus & cytoplasm
3 types (mRNA, tRNA, rRNA)
Disposable copies

thymine (DNA)

uracil (RNA)

uracil (RNA) thymir

