Genetics
 Dihybrid Crosses

Pea Plants

Pea Plants

Height
Tall $=\mathrm{TT}, \mathrm{T} \dagger$
Short $=\dagger \dagger$

Pea Plants

Height
Tall $=\mathrm{TT}, \mathrm{T} \dagger$
Short $=\dagger \dagger$

Seed Color

Yellow = YY, Yy
Green = yy

Pea Plants

Height
Tall $=\mathrm{TT}, \mathrm{T} \dagger$
Short $=\dagger \dagger$

Seed Color

Yellow = YY, Yy
Green = yy

Let's cross a homozygous tall (TT), homozygous yellow seed (YY) plant with a short ($\mathrm{t} \dagger$), green seed (yy) plant.

TTYY x tryy
These are the genotypes of the two plants.

Homozygous?

Homozygous means that both genes for a trait are either DOMINANT or recessive.

Homozygous?

Homozygous means that both genes for a trait are eitherDOMINANT or recessive.

TTYY x t†yy

Independent Assortment

Mendels' principle of Independent Assortment states that genes for different traits can segregate independently during the formation of gametes (eggs \& sperm in animals, eggs and pollen in plants).

TTYY

Independent Assortment

Mendels' principle of Independent Assortment states that genes for different traits can segregate independently during the formation of gametes (eggs \& sperm in animals, eggs and pollen in plants).

Independent Assortment

Mendels' principle of Independent Assortment states that genes for different traits can segregate independently during the formation of gametes (eggs \& sperm in animals, eggs and pollen in plants).

Gamete 1 = sperm, egg, pollen . . .

Independent Assortment

Mendels' principle of Independent Assortment states that genes for different traits can segregate independently during the formation of gametes (eggs \& sperm in animals, eggs and pollen in plants).

> First T TTYY

TY
Gamete 1

Independent Assortment

Mendels' principle of Independent Assortment states that genes for different traits can segregate independently during the formation of gametes (eggs \& sperm in animals, eggs and pollen in plants).

Gamete 1 Gamete 2

Independent Assortment

Mendels' principle of Independent Assortment states that genes for different traits can segregate independently during the formation of gametes (eggs \& sperm in animals, eggs and pollen in plants).

TTYY

TY
TY
Gamete 1 Gamete 2

Independent Assortment

Mendels' principle of Independent Assortment states that genes for different traits can segregate independently during the formation of gametes (eggs \& sperm in animals, eggs and pollen in plants).

Gamete 1 Gamete 2 Gamete 3

Independent Assortment

Mendels' principle of Independent Assortment states that genes for different traits can segregate independently during the formation of gametes (eggs \& sperm in animals, eggs and pollen in plants).

Second T TTYY

TY
TY
TY
Gamete 1 Gamete 2 Gamete 3

Independent Assortment

Mendels' principle of Independent Assortment states that genes for different traits can segregate independently during the formation of gametes (eggs \& sperm in animals, eggs and pollen in plants).

Second T TV with second Y

TY
TY
Gamete 1 Gamete 2 Gamete 3 Gamete 4

Dihybrid Punnett Square

Dihybrid Punnett Square

Dihybrid Punnett Square

	TY	TY	TY	- TY
ty	Tty	TtYy	Tty	TtYy
ty	T+Yy	T+YY	T+Yy	T+Yy
ty	Ttyy	T+Yy	Ttyy	Ttyy
ty	Ttyy	T+Yy	T+Yy	T+Yy

Dihybrid Punnett Square

Dihybrid Punnett Square

Dihybrid Punnett Square

Dihybrid Punnett Square

Dihybrid Punnett Square

Dihybrid Punnett Square

Dihybrid Punnett Square

Dihybrid Punnett Square

	Ty	Ty	ty	ty
Ty	TTYY	TTYy	Tty	Tty
Ty	????	????	????	????
ty	????	????	????	????
ty	????	????	????	????

Dihybrid Punnett Square

	Ty	Ty	ty	ty
Ty	TTYY	TTYy	Tty	Tty
Ty	????	????	????	????
ty	????	????	????	????
ty	????	????	????	????

Dihybrid Punnett Square

	TY	Ty	ty	ty
TY	TTYY	TTYy	T+Yy	TtYy
Ty	TTYy	TTyy	T+Yy	Ttyy
ty	T+Yy	Ttyy	t+Yy	t+Yy
ty	TtYy	Ttyy	ttYy	ttyy

Dihybrid Punnett Square

	TY			
TY	TTYY	TTYy	T+Yy	T+Yy
Ty	TTYY	TTyy	T+Yy	Ttyy
+Y	T†YY	${ }^{2} \text { gtyy }$	t+yy	t+Yy
ty	T+Yy	Ttyy	ttyy	ttyy

Dihybrid Punnett Square

Genotype and phenotype ratios?

TTyy	TTyy	Ttyy	Ttyy
TTyy	TTyy	Ttyy	Ttyy
Ttyy	Ttyy	t+yy	t+yy
Ttyy	Ttyy	ttyy	ttyy

Genotype Ratio

$$
\begin{aligned}
& \text { TTYY - } 1 \\
& \text { TTYy - } 2 \\
& \text { T+YY - } 2 \\
& \text { TtYy - } 4 \\
& \text { TTyy - } 1 \\
& \text { Ttyy - } 2 \\
& \text { t+Yy - } \\
& \text { t+Yy - } 2 \\
& \text { ttyy - } 1
\end{aligned}
$$

$$
\begin{aligned}
& \text { Phenotype Ratio } \\
& \text { TTYY - } 1 \\
& \text { TTYy - } 2 \\
& \text { T+YY - } 2 \\
& \text { T+Yy - } 4 \\
& \text { TTyy-1 } \\
& \text { Ttyy - } 2 \\
& \text { t†YY -1 } \\
& \text { t+Уy - } 2 \\
& \text { ttyy - } 1 \\
& \text { Tall, Green - } 3 \\
& \text { Short, Yellow - } 3 \\
& \text { Short, Green - } 1
\end{aligned}
$$

Dihybrid Punnett Square

Homework	
Question 3 on Rats Practice	
Problems and questions 2 \& 3	
on Foxes and Watermelon $\$$	
Practice Problems.	

